Fork me on GitHub

Spring Cloud Sleuth使用ELK收集&分析日志

目录

TIPS

本文基于Spring Cloud Greenwich SR2,理论兼容Spring Cloud所有版本。

应用整合

  • 加依赖:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    <dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-sleuth</artifactId>
    </dependency>
    <dependency>
    <groupId>net.logstash.logback</groupId>
    <artifactId>logstash-logback-encoder</artifactId>
    <version>6.1</version>
    </dependency>

    注意, logstash-logback-encoder版本务必和Logback兼容,否则会导致应用启动不起来,而且不会打印任何日志!可前往 https://github.com/logstash/logstash-logback-encoder 查看和Logback的兼容性。

  • resources 目录下创建配置文件:logback-spring.xml ,内容如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    <?xml version="1.0" encoding="UTF-8"?>
    <configuration>
    <include resource="org/springframework/boot/logging/logback/defaults.xml"/>

    <springProperty scope="context" name="springAppName" source="spring.application.name"/>
    <!-- Example for logging into the build folder of your project -->
    <property name="LOG_FILE" value="/Users/reno/Desktop/未命名文件夹/elk/logs/${springAppName}"/>

    <!-- You can override this to have a custom pattern -->
    <property name="CONSOLE_LOG_PATTERN"
    value="%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} %clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint} %clr([%15.15t]){faint} %clr(%-40.40logger{39}){cyan} %clr(:){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}"/>

    <!-- Appender to log to console -->
    <appender name="console" class="ch.qos.logback.core.ConsoleAppender">
    <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
    <!-- Minimum logging level to be presented in the console logs-->
    <level>DEBUG</level>
    </filter>
    <encoder>
    <pattern>${CONSOLE_LOG_PATTERN}</pattern>
    <charset>utf8</charset>
    </encoder>
    </appender>

    <!-- Appender to log to file -->
    <appender name="flatfile" class="ch.qos.logback.core.rolling.RollingFileAppender">
    <file>${LOG_FILE}</file>
    <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
    <fileNamePattern>${LOG_FILE}.%d{yyyy-MM-dd}.gz</fileNamePattern>
    <maxHistory>7</maxHistory>
    </rollingPolicy>
    <encoder>
    <pattern>${CONSOLE_LOG_PATTERN}</pattern>
    <charset>utf8</charset>
    </encoder>
    </appender>

    <!-- Appender to log to file in a JSON format -->
    <appender name="logstash" class="ch.qos.logback.core.rolling.RollingFileAppender">
    <file>${LOG_FILE}.json</file>
    <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
    <fileNamePattern>${LOG_FILE}.json.%d{yyyy-MM-dd}.gz</fileNamePattern>
    <maxHistory>7</maxHistory>
    </rollingPolicy>
    <encoder class="net.logstash.logback.encoder.LoggingEventCompositeJsonEncoder">
    <providers>
    <timestamp>
    <timeZone>UTC</timeZone>
    </timestamp>
    <pattern>
    <pattern>
    {
    "severity": "%level",
    "service": "${springAppName:-}",
    "trace": "%X{X-B3-TraceId:-}",
    "span": "%X{X-B3-SpanId:-}",
    "parent": "%X{X-B3-ParentSpanId:-}",
    "exportable": "%X{X-Span-Export:-}",
    "pid": "${PID:-}",
    "thread": "%thread",
    "class": "%logger{40}",
    "rest": "%message"
    }
    </pattern>
    </pattern>
    </providers>
    </encoder>
    </appender>

    <root level="INFO">
    <appender-ref ref="console"/>
    <!-- uncomment this to have also JSON logs -->
    <appender-ref ref="logstash"/>
    <!--<appender-ref ref="flatfile"/>-->
    </root>
    </configuration>
  • 新建 bootstrap.yml ,并将application.yml 中的以下属性移到bootstrap.yml 中。

    1
    2
    3
    spring:
    application:
    name: user-center

    由于上面的 logback-spring.xml 含有变量(例如 springAppName ),故而 spring.application.name 属性必须设置在 bootstrap.yml 文件中,否则,logback-spring.xml 将无法正确读取属性。

测试

  • 启动应用

  • 日志会打印到 /Users/reno/Desktop/未命名文件夹/elk/logs/目录中 ,并且文件名称为 user-center.json ,内容类似如下:

    1
    2
    3
    4
    5
    {"@timestamp":"2019-08-29T02:38:42.468Z","severity":"DEBUG","service":"microservice-provider-user","trace":"5cf9479e966fb5ec","span":"5cf9479e966fb5ec","parent":"","exportable":"false","pid":"13144","thread":"http-nio-8000-exec-1","class":"o.s.w.s.m.m.a.RequestResponseBodyMethodProcessor","rest":"Using 'application/json;q=0.8', given [text/html, application/xhtml+xml, image/webp, image/apng, application/signed-exchange;v=b3, application/xml;q=0.9, */*;q=0.8] and supported [application/json, application/*+json, application/json, application/*+json]"}
    {"@timestamp":"2019-08-29T02:38:42.469Z","severity":"DEBUG","service":"microservice-provider-user","trace":"5cf9479e966fb5ec","span":"5cf9479e966fb5ec","parent":"","exportable":"false","pid":"13144","thread":"http-nio-8000-exec-1","class":"o.s.w.s.m.m.a.RequestResponseBodyMethodProcessor","rest":"Writing [Optional[User(id=1, username=account1, name=张三, age=20, balance=100.00)]]"}
    {"@timestamp":"2019-08-29T02:38:42.491Z","severity":"DEBUG","service":"microservice-provider-user","trace":"5cf9479e966fb5ec","span":"5cf9479e966fb5ec","parent":"","exportable":"false","pid":"13144","thread":"http-nio-8000-exec-1","class":"o.s.o.j.s.OpenEntityManagerInViewInterceptor","rest":"Closing JPA EntityManager in OpenEntityManagerInViewInterceptor"}
    {"@timestamp":"2019-08-29T02:38:42.492Z","severity":"DEBUG","service":"microservice-provider-user","trace":"5cf9479e966fb5ec","span":"5cf9479e966fb5ec","parent":"","exportable":"false","pid":"13144","thread":"http-nio-8000-exec-1","class":"o.s.web.servlet.DispatcherServlet","rest":"Completed 200 OK"}
    {"@timestamp":"2019-08-29T02:38:58.141Z","severity":"ERROR","service":"microservice-provider-user","trace":"","span":"","parent":"","exportable":"","pid":"13144","thread":"ThreadPoolTaskScheduler-1","class":"o.s.c.alibaba.nacos.discovery.NacosWatch","rest":"Error watching Nacos Service change"}

    下面,只需要让Logstash收集到这个JSON文件,就可以在Kibana上检索日志啦!

ELK搭建

简单起见,本文使用Docker搭建ELK;其他搭建方式,请看官自行百度,比较简单,但很耗时。

  • 创建 docker-compose.yml 文件,内容如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    version: '3'
    services:
    elasticsearch:
    image: elasticsearch:7.3.1
    environment:
    discovery.type: single-node
    ports:
    - "9200:9200"
    - "9300:9300"
    logstash:
    image: logstash:7.3.1
    command: logstash -f /etc/logstash/conf.d/logstash.conf
    volumes:
    # 挂载logstash配置文件
    - ./config:/etc/logstash/conf.d
    - /Users/reno/Desktop/未命名文件夹/elk/logs/:/opt/build/
    ports:
    - "5000:5000"
    kibana:
    image: kibana:7.3.1
    environment:
    - ELASTICSEARCH_URL=http://elasticsearch:9200
    ports:
    - "5601:5601"

    需要注意,上面的 /Users/reno/Desktop/未命名文件夹/elk/logs/ 需要改成你应用的打印路径。

  • 在docker-compose.yml文件所在目录创建 config/logstash.conf ,内容如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    input {
    file {
    codec => json
    path => "/opt/build/*.json" # 改成你项目打印的json日志文件。
    }
    }
    filter {
    grok {
    match => { "message" => "%{TIMESTAMP_ISO8601:timestamp}\s+%{LOGLEVEL:severity}\s+\[%{DATA:service},%{DATA:trace},%{DATA:span},%{DATA:exportable}\]\s+%{DATA:pid}\s+---\s+\[%{DATA:thread}\]\s+%{DATA:class}\s+:\s+%{GREEDYDATA:rest}" }
    }
    }
    output {
    elasticsearch {
    hosts => "elasticsearch:9200" # 改成你的Elasticsearch地址
    }
    }
  • 启动ELK

    1
    docker-compose up

测试Sleuth & ELK

  • 访问你微服务的API,让它生成一些日志(如果产生日志比较少,可将 org.springframework 包的日志级别设为 debug

  • 访问 http://localhost:5601 (Kibana地址),可看到类似如下的界面,按照如图配置Kibana。

  • 图片描述

  • 图片描述

  • 输入条件,即可分析日志:

    图片描述

原理分析

原理比较简单:

  • 让Sleuth打印JSON格式的日志;
  • 然后在Logstash的配置文件中,配置grok语法,解析并收集JSON格式的日志,并存储到Elasticsearch中去;
  • Kibana可视化分析日志。

相关文章

评论系统未开启,无法评论!